´╗┐

Manchester Monarchs

GP: 10 | W: 9 | L: 0 | OTL: 1 | P: 19
GF: 55 | GA: 33 | PP%: 37.93% | PK%: 75.00%
GM : Sylvain Lemieux | Morale : 59 | Team Overall : 59
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Milan LucicX100.00948878708865917340646260258288675266X0
2Alexandre Texier (R)XX100.006742908371636764426570602547476963620
3Mason AppletonXXX100.006342878072588060365760712555556462610
4Tom Kuhnhackl (C)XX100.00764497777359565825606074256063656261X0
5Dmytro TimashovXX100.008645886769527559256059702557576462600
6Egor SharangovichX100.008073976473747957715357655444446362590
7Brandon Hagel (R)X100.006863816863788458504962605944446263580
8Lukas JasekX100.007468886168717558505161635844446362580
9Philipp Kurashev (R)X100.007770926670646659745757645444446262580
10Connor BunnamanX100.007944966475547357565557612545455959570
11Andrew PoturalskiXXX100.007469865969616356705650654855555860570
12Joona Luoto (R)XX100.006742957370466452255055722545456052560
13Nicolas Hague (R)X100.008346767882698466256048562547476160630
14Ilya LyubushkinX100.009547897076646462254747672555555962630
15Karl AlznerX100.00828086678062665125413973377578544963X0
16Nick SeelerX100.008194666677586354254747712555565854610
17Kevin GravelX100.008380897080525546253440673856575350580
18Brady Keeper (R)X100.006672536872626648253942564044445164550
Scratches
1Vladimir SobotkaX100.008144917965676157726157822571746611630
2Kirill Maksimov (R)X100.007877816777697550504747634544445655560
3Josh Wilkins (R)X100.007366886466626550635046604444445540540
4Louie BelpedioX100.006569566469768349254241563944445247560
5Jake Christiansen (R)X100.007971995871545841252839613744444955530
TEAM AVERAGE100.00776285697363705641515265365253605559
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Kevin Boyle100.00596482785961526257563044444640590
2Scott Wedgewood100.00526784764855505751513054545459560
Scratches
1Jakub Skarek (R)100.00495265794748505448483044445062520
TEAM AVERAGE100.0053617778515551585252304747505456
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jeremy Colliton82848484534990CAN353120,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Egor SharangovichManchester Monarchs (NSH)C1041418100191824111316.67%819419.48178322000050056.96%23754001.8500000110
2Alexandre TexierManchester Monarchs (NSH)C/LW10412167751454617258.70%517417.48123217000041048.39%31103001.8300001201
3Milan LucicManchester Monarchs (NSH)LW66713660121033122218.18%611118.53112112000042036.36%1133002.3400000220
4Brandon HagelManchester Monarchs (NSH)LW107613-2751573152022.58%615515.54325511000052160.00%15107001.6700001010
5Nicolas HagueManchester Monarchs (NSH)D103710710020925151012.00%2025925.97213625000122000.00%069000.7700000010
6Lukas JasekManchester Monarchs (NSH)RW1046101201693022413.33%115615.61112213000161054.55%1155001.2801000101
7Mason AppletonManchester Monarchs (NSH)C/LW/RW107296006929151524.14%316416.460110100001161028.57%786001.0900000300
8Tom KuhnhacklManchester Monarchs (NSH)LW/RW1036940010113610178.33%215215.271013110001400100.00%165001.1800000000
9Dmytro TimashovManchester Monarchs (NSH)LW/RW10538620125186827.78%110710.7300004000190066.67%332001.4900000020
10Ilya LyubushkinManchester Monarchs (NSH)D101676602016236104.35%2125925.93011126000024100.00%0010000.5400000001
11Philipp KurashevManchester Monarchs (NSH)C103475201092461112.50%416316.38022113000131060.00%15514000.8500000001
12Nick SeelerManchester Monarchs (NSH)D10066104020191515670.00%1120720.72000014000019000.00%045000.5800031100
13Andrew PoturalskiManchester Monarchs (NSH)C/LW/RW103367551215101630.00%113313.31000010000210068.83%7719000.9000001001
14Connor BunnamanManchester Monarchs (NSH)C913450069931511.11%39410.45000000000140051.72%2954000.8500000001
15Karl AlznerManchester Monarchs (NSH)D61235208764216.67%1013923.3100008000017000.00%014000.4300000000
16Joona LuotoManchester Monarchs (NSH)LW/RW5011300129160.00%2397.960000000000000.00%014000.5000000000
17Brady KeeperManchester Monarchs (NSH)D10011222102255240.00%712812.800000000002000.00%017000.1600002000
18Jake ChristiansenManchester Monarchs (NSH)D5011-1175224120.00%66913.900000000003000.00%001000.2900100000
19Kirill MaksimovManchester Monarchs (NSH)RW7000520851030.00%1669.520000200002000.00%113000.0000000000
20Kevin GravelManchester Monarchs (NSH)D5000300753120.00%16513.190000200003000.00%001000.0000000000
21Louie BelpedioManchester Monarchs (NSH)D6000020110000.00%3233.980000100003000.00%000000.0000000000
Team Total or Average1795290142861325024017438112422213.65%122286716.021018282420100061969157.96%5787196000.99011361076
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Scott WedgewoodManchester Monarchs (NSH)65010.9212.513350014177109000.000055001
2Jakub SkarekManchester Monarchs (NSH)54000.8824.222700019161105000.000055000
3Kevin BoyleManchester Monarchs (NSH)10000.8467.0617002134000.000009000
Team Total or Average129010.9003.376230035351218000.00001019001


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alexandre TexierManchester Monarchs (NSH)C/LW201999-09-13 06:08:55Yes192 Lbs6 ft1NoNoNo2Pro & Farm897,500$0$0$No897,500$Link
Andrew PoturalskiManchester Monarchs (NSH)C/LW/RW261994-01-14No190 Lbs5 ft11YesNoNo1Pro & Farm900,000$0$0$NoLink
Brady KeeperManchester Monarchs (NSH)D241996-06-05Yes194 Lbs6 ft2NoNoNo1Pro & Farm500,001$0$0$NoLink
Brandon HagelManchester Monarchs (NSH)LW211998-08-26Yes174 Lbs5 ft11NoNoNo1Pro & Farm880,833$0$0$NoLink
Connor BunnamanManchester Monarchs (NSH)C221998-04-16No207 Lbs6 ft1NoNoNo2Pro & Farm736,666$0$0$No736,666$Link
Dmytro TimashovManchester Monarchs (NSH)LW/RW231996-09-30No195 Lbs5 ft10NoNoNo1Pro & Farm694,444$0$0$NoLink
Egor SharangovichManchester Monarchs (NSH)C221998-06-06No196 Lbs6 ft2NoNoNo2Pro & Farm775,833$0$0$No775,833$Link
Ilya LyubushkinManchester Monarchs (NSH)D261994-04-06No209 Lbs6 ft2NoNoNo1Pro & Farm874,125$0$0$NoLink
Jake ChristiansenManchester Monarchs (NSH)D201999-09-12Yes194 Lbs6 ft1NoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$Link
Jakub SkarekManchester Monarchs (NSH)G201999-11-10Yes196 Lbs6 ft3NoNoNo3Pro & Farm778,333$0$0$No778,333$778,333$
Joona LuotoManchester Monarchs (NSH)LW/RW221997-09-26Yes185 Lbs6 ft2NoNoNo2Pro & Farm741,667$0$0$No741,667$Link
Josh WilkinsManchester Monarchs (NSH)C231997-06-11Yes181 Lbs5 ft11NoNoNo1Pro & Farm925,002$0$0$NoLink
Karl Alzner (1 Way Contract)Manchester Monarchs (NSH)D311988-09-24No217 Lbs6 ft3NoYesNo2Farm Only4,625,000$4,625,000$4,625,000$No4,625,000$Link
Kevin BoyleManchester Monarchs (NSH)G281992-05-29No200 Lbs6 ft2NoNoNo1Pro & Farm775,000$0$0$NoLink
Kevin GravelManchester Monarchs (NSH)D281992-03-06No212 Lbs6 ft4YesNoNo1Pro & Farm975,000$0$0$NoLink
Kirill MaksimovManchester Monarchs (NSH)RW211999-06-01Yes207 Lbs6 ft3NoNoNo2Pro & Farm775,000$0$0$No775,000$
Louie BelpedioManchester Monarchs (NSH)D241996-05-14No193 Lbs5 ft11NoNoNo1Pro & Farm700,000$0$0$NoLink
Lukas JasekManchester Monarchs (NSH)RW221997-08-28No183 Lbs6 ft1NoNoNo2Pro & Farm853,333$0$0$No853,333$Link
Mason AppletonManchester Monarchs (NSH)C/LW/RW241996-01-15No193 Lbs6 ft2NoNoNo1Pro & Farm758,000$0$0$NoLink
Milan Lucic (1 Way Contract)Manchester Monarchs (NSH)LW321988-06-06No236 Lbs6 ft3NoYesNo1Farm Only6,000,000$6,000,000$6,000,000$NoLink
Nick SeelerManchester Monarchs (NSH)D271993-06-02No200 Lbs6 ft2NoNoNo1Pro & Farm725,000$0$0$NoLink
Nicolas HagueManchester Monarchs (NSH)D211998-12-05Yes214 Lbs6 ft6NoNoNo2Pro & Farm791,668$0$0$No791,668$Link
Philipp KurashevManchester Monarchs (NSH)C201999-10-12Yes192 Lbs6 ft0NoNoNo2Pro & Farm842,501$0$0$No842,501$
Scott WedgewoodManchester Monarchs (NSH)G271992-08-14No195 Lbs6 ft2YesNoNo1Pro & Farm1,400,000$0$0$NoLink
Tom KuhnhacklManchester Monarchs (NSH)LW/RW281992-01-21No196 Lbs6 ft2NoYesNo1Pro & Farm850,000$0$0$NoLink
Vladimir SobotkaManchester Monarchs (NSH)C321987-07-02No184 Lbs5 ft10NoNoNo1Pro & Farm3,500,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2624.38198 Lbs6 ft11.501,276,919$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Milan LucicConnor BunnamanMason Appleton43005
2Alexandre TexierEgor SharangovichTom Kuhnhackl35005
3Brandon HagelPhilipp KurashevDmytro Timashov18113
4Joona LuotoAndrew PoturalskiLukas Jasek4122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nicolas HagueIlya Lyubushkin46113
2Karl AlznerNick Seeler44113
3Kevin GravelBrady Keeper10113
4Nicolas HagueIlya Lyubushkin0122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Milan LucicConnor BunnamanMason Appleton55005
2Alexandre TexierEgor SharangovichTom Kuhnhackl45005
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Nicolas HagueIlya Lyubushkin60104
2Karl AlznerNick Seeler40104
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Philipp KurashevDmytro Timashov60140
2Andrew PoturalskiLukas Jasek40140
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Karl AlznerNick Seeler65140
2Nicolas HagueIlya Lyubushkin35140
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Philipp Kurashev60050Karl AlznerNick Seeler65140
2Andrew Poturalski40050Nicolas HagueIlya Lyubushkin35140
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Connor BunnamanMilan Lucic55104
2Egor SharangovichAlexandre Texier45104
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nicolas HagueIlya Lyubushkin60113
2Karl AlznerNick Seeler40113
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Milan LucicConnor BunnamanMason AppletonNicolas HagueIlya Lyubushkin
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Alexandre TexierEgor SharangovichTom KuhnhacklKarl AlznerNick Seeler
Extra Forwards
Normal PowerPlayPenalty Kill
Egor Sharangovich, Alexandre Texier, Milan LucicAlexandre Texier, Milan LucicBrandon Hagel
Extra Defensemen
Normal PowerPlayPenalty Kill
Karl Alzner, Ilya Lyubushkin, Nicolas HagueKevin GravelNicolas Hague, Karl Alzner
Penalty Shots
Milan Lucic, Alexandre Texier, Mason Appleton, Tom Kuhnhackl, Dmytro Timashov
Goalie
#1 : Kevin Boyle, #2 : Scott Wedgewood


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Brampton Battalion210010001275100010006511100000062441.00012203200141821287116132139663276623133.33%3166.67%012021057.14%11819759.90%9917456.90%2201181949019299
2Chicago Wolves11000000422110000004220000000000021.000481200141821231116132139627162524100.00%60100.00%012021057.14%11819759.90%9917456.90%2201181949019299
3Drummondville Voltigeurs2200000017107110000008531100000095441.0001728450014182127811613213968522334011763.64%9455.56%012021057.14%11819759.90%9917456.90%2201181949019299
4Rochester Americans3200100016881100000051421001000117461.00016304600141821212111613213969938546911218.18%7271.43%012021057.14%11819759.90%9917456.90%2201181949019299
Total1070021005533225400100026151153001100291811190.95055951500014182123931161321396338124132250291137.93%32875.00%012021057.14%11819759.90%9917456.90%2201181949019299
6Victoriaville Tigres21000100660110000003211000010034-130.7506915001418212761161321396642114553133.33%7185.71%012021057.14%11819759.90%9917456.90%2201181949019299
_Since Last GM Reset1070021005533225400100026151153001100291811190.95055951500014182123931161321396338124132250291137.93%32875.00%012021057.14%11819759.90%9917456.90%2201181949019299
_Vs Conference96002100513120430010002213953001100291811170.94451871380014182123621161321396311108107226281139.29%26869.23%012021057.14%11819759.90%9917456.90%2201181949019299
_Vs Division26002100660130010003211300110034-1174.2506915001418212761161321396642114553133.33%7185.71%012021057.14%11819759.90%9917456.90%2201181949019299

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1019W3559515039333812413225000
All Games
GPWLOTWOTL SOWSOLGFGA
107021005533
Home Games
GPWLOTWOTL SOWSOLGFGA
54010002615
Visitor Games
GPWLOTWOTL SOWSOLGFGA
53011002918
Last 10 Games
WLOTWOTL SOWSOL
702100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
291137.93%32875.00%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
11613213961418212
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
12021057.14%11819759.90%9917456.90%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2201181949019299


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2020-09-301Chicago Wolves2Manchester Monarchs4WBoxScore
2 - 2020-10-0120Manchester Monarchs9Drummondville Voltigeurs5WBoxScore
4 - 2020-10-0346Brampton Battalion5Manchester Monarchs6WXBoxScore
5 - 2020-10-0464Rochester Americans1Manchester Monarchs5WBoxScore
6 - 2020-10-0581Manchester Monarchs6Rochester Americans3WBoxScore
7 - 2020-10-0693Manchester Monarchs3Victoriaville Tigres4LXBoxScore
8 - 2020-10-07103Manchester Monarchs5Rochester Americans4WXBoxScore
10 - 2020-10-09114Drummondville Voltigeurs5Manchester Monarchs8WBoxScore
11 - 2020-10-10131Victoriaville Tigres2Manchester Monarchs3WBoxScore
12 - 2020-10-11143Manchester Monarchs6Brampton Battalion2WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 2,257,490$ 2,247,490$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT