´╗┐

London Knights

GP: 10 | W: 3 | L: 6 | OTL: 1 | P: 7
GF: 74 | GA: 74 | PP%: 57.14% | PK%: 81.82%
GM : Stephane Ethier | Morale : 63 | Team Overall : 57
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1John HaydenXX100.008599537385546657325258732559596248600
2Brian PinhoX100.007264926664808560755462625944446447600
3Andy AndreoffX100.007944957074528154465755612563646144590
4Kristian VesalainenXX100.008277946277717459505658675544446452590
5Kieffer BellowsX100.007271746971778259504767626444446458590
6Keegan KolesarX100.008282816582687157506247674545455953590
7Beau Bennett (R)XX100.007873896673555363506458665544446342590
8Skyler McKenzieX100.007061906661717556505256605344446048570
9Ryan McLeod (R)X100.008076886176727754685747654544445844570
10Jack RodewaldX100.006962856862697452505047604550505545550
11Manuel WiedererXX100.007164866164565852655347604544445547530
12Ethan ProwX100.007266856466717462255553645051516259600
13Tyler WotherspoonX100.007976856176727851254741633944445552590
14Lucas CarlssonX100.007470846570737854255242624044445650590
15Hunter WarnerX100.007983706383616742252840623849495053560
16Anton Karlsson (R)X100.007369826269636846253740593844445152550
17Colby WilliamsX100.006669606569535548253939583753535052540
18Noah JuulsenX100.007467905367474748254139603745455045520
Scratches
TEAM AVERAGE100.00757182647265705442505063444848585057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
TEAM AVERAGE0.000000000000000000
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Adam Nightingale65595966605685USA40160,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Filip ZadinaMaroonsLW/RW72013333009675203826.67%916223.2773101415000001127.27%11181054.0500000330
2Ethan ProwLondon Knights (MON)D1032326-77510185322295.66%2026326.383710717000116010.00%088001.9700100111
3Kristian VesalainenLondon Knights (MON)LW/RW107815-500151251243813.73%517617.63268816000031066.67%391001.7000000011
4Lucas CarlssonLondon Knights (MON)D103912-1110108429151510.34%1518918.90336819000115000.00%0113001.2700101000
5Kieffer BellowsLondon Knights (MON)LW103811-31610754114237.32%212412.4501101000030177.78%9147001.7700101001
6John HaydenLondon Knights (MON)C/LW3437-640103493544.44%25618.7000025000020025.00%414002.5000110000
7Brian PinhoLondon Knights (MON)C3257-7005383725.00%57324.5320226000080058.24%9130001.9000000010
8Beau BennettLondon Knights (MON)LW/RW3347-15521135623.08%15418.1002206000030057.14%740002.5800010100
9Tyler WotherspoonLondon Knights (MON)D10145-7222020616676.25%2124624.61011317000016000.00%0314000.4100112010
10Manuel WiedererLondon Knights (MON)C/RW10134-65534122118.33%1808.0400000000000061.11%1851001.0000001000
11Keegan KolesarLondon Knights (MON)RW3123-2955153520.00%15117.15000050000000100.00%250001.1700001000
12Ryan McLeodLondon Knights (MON)C3022000717030.00%05518.4100005000030061.29%3111000.7200000001
13Jack RodewaldLondon Knights (MON)RW3011-500328050.00%35016.7300000000060033.33%320000.4000000000
14Skyler McKenzieLondon Knights (MON)LW10101-6002431333.33%0292.930000100002000.00%021000.6800000000
15Hunter WarnerLondon Knights (MON)D3011-700640000.00%35919.860000600007000.00%011000.3400000000
16Noah JuulsenLondon Knights (MON)D3000-200000000.00%0165.400000000000000.00%000000.0000000000
17Anton KarlssonLondon Knights (MON)D3000-355111000.00%54113.710000000000000.00%002000.0000001000
18Colby WilliamsLondon Knights (MON)D3000-200101100.00%13712.330000000000000.00%011000.0000000000
Team Total or Average1074986135-77119751077633211919514.76%94176716.52172340441260002912357.54%1797855051.5300537574
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Team Total or Average0.0000.0000.000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Andy AndreoffLondon Knights (MON)C291991-05-17No203 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoLink
Anton KarlssonLondon Knights (MON)D231996-08-03Yes187 Lbs6 ft1NoNoNo1Pro & Farm500,001$0$0$No
Beau BennettLondon Knights (MON)LW/RW281991-11-27Yes195 Lbs6 ft2NoNoNo1Pro & Farm500,001$0$0$No
Brian PinhoLondon Knights (MON)C251995-05-10No173 Lbs6 ft0NoNoNo2Pro & Farm750,000$0$0$No750,000$Link
Colby WilliamsLondon Knights (MON)D251995-01-26No191 Lbs5 ft11NoNoNo1Pro & Farm700,000$0$0$NoLink
Ethan ProwLondon Knights (MON)D271992-11-17No180 Lbs5 ft11NoNoNo1Pro & Farm725,000$0$0$NoLink
Hunter WarnerLondon Knights (MON)D241995-09-21No221 Lbs6 ft4NoNoNo1Pro & Farm700,000$0$0$NoLink
Jack RodewaldLondon Knights (MON)RW261994-02-14No169 Lbs6 ft0NoNoNo1Pro & Farm725,000$0$0$NoLink
John HaydenLondon Knights (MON)C/LW251995-02-14No223 Lbs6 ft3NoNoNo1Pro & Farm750,000$0$0$NoLink
Keegan KolesarLondon Knights (MON)RW231997-04-08No227 Lbs6 ft2NoNoNo1Pro & Farm905,000$0$0$NoLink
Kieffer BellowsLondon Knights (MON)LW221998-06-10No196 Lbs6 ft0NoNoNo2Pro & Farm894,166$0$0$No894,166$Link
Kristian VesalainenLondon Knights (MON)LW/RW211999-06-01No207 Lbs6 ft3NoNoNo2Pro & Farm875,000$0$0$No875,000$Link
Lucas CarlssonLondon Knights (MON)D221997-07-05No190 Lbs6 ft0NoNoNo2Pro & Farm792,500$0$0$No792,500$Link
Manuel WiedererLondon Knights (MON)C/RW231996-11-21No170 Lbs6 ft0NoNoNo1Pro & Farm737,000$0$0$NoLink
Noah JuulsenLondon Knights (MON)D231997-04-02No175 Lbs6 ft2NoNoNo1Pro & Farm863,333$0$0$NoLink
Ryan McLeodLondon Knights (MON)C201999-09-21Yes201 Lbs6 ft3NoNoNo1Pro & Farm834,167$0$0$No
Skyler McKenzieLondon Knights (MON)LW221998-01-20No170 Lbs5 ft9NoNoNo2Pro & Farm741,666$0$0$No741,666$Link
Tyler WotherspoonLondon Knights (MON)D271993-03-11No207 Lbs6 ft2NoNoNo1Pro & Farm700,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1824.17194 Lbs6 ft11.28746,824$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1John HaydenBrian PinhoBeau Bennett40122
2Kristian VesalainenRyan McLeodKeegan Kolesar30122
3Kieffer BellowsManuel WiedererJack Rodewald20122
4Skyler McKenzieBrian PinhoJohn Hayden10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ethan ProwTyler Wotherspoon40122
2Lucas CarlssonHunter Warner30122
3Anton KarlssonColby Williams20122
4Noah JuulsenEthan Prow10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1John HaydenBrian PinhoBeau Bennett60122
2Kristian VesalainenRyan McLeodKeegan Kolesar40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Ethan ProwTyler Wotherspoon60122
2Lucas CarlssonHunter Warner40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Brian PinhoJohn Hayden60122
2Beau BennettKristian Vesalainen40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Ethan ProwTyler Wotherspoon60122
2Lucas CarlssonHunter Warner40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Brian Pinho60122Ethan ProwTyler Wotherspoon60122
2John Hayden40122Lucas CarlssonHunter Warner40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Brian PinhoJohn Hayden60122
2Beau BennettKristian Vesalainen40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ethan ProwTyler Wotherspoon60122
2Lucas CarlssonHunter Warner40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
John HaydenBrian PinhoBeau BennettEthan ProwTyler Wotherspoon
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
John HaydenBrian PinhoBeau BennettEthan ProwTyler Wotherspoon
Extra Forwards
Normal PowerPlayPenalty Kill
Kieffer Bellows, Skyler McKenzie, Jack RodewaldKieffer Bellows, Skyler McKenzieJack Rodewald
Extra Defensemen
Normal PowerPlayPenalty Kill
Anton Karlsson, Colby Williams, Noah JuulsenAnton KarlssonColby Williams, Noah Juulsen
Penalty Shots
Brian Pinho, John Hayden, Beau Bennett, Kristian Vesalainen, Kieffer Bellows
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Brampton Battalion1010000069-31010000069-30000000000000.0006111700173027050130154144054219165360.00%2150.00%08320839.90%5312941.09%10325939.77%2201352078517283
2Calgary Hitman202000001218-610100000510-51010000078-100.00012203200173027077130154144088285431100.00%70100.00%08320839.90%5312941.09%10325939.77%2201352078517283
3Lake Erie Monsters21100000161331100000011471010000059-420.50016274300173027093130154144057138367571.43%4175.00%08320839.90%5312941.09%10325939.77%2201352078517283
4Las Vegas Wranglers21100000161421010000068-211000000106420.500162945001730270761301541440672450299333.33%5180.00%08320839.90%5312941.09%10325939.77%2201352078517283
5Peoria Riverman1010000078-1000000000001010000078-100.0007111800173027041130154144037125194250.00%000.00%08320839.90%5312941.09%10325939.77%2201352078517283
6Sherbrooke Phoenix21000100171251100000011561000010067-130.750173350001730270911301541440733018339777.78%4175.00%08320839.90%5312941.09%10325939.77%2201352078517283
Total103600100747405230000039363513001003538-370.350741312050017302704281301541440376128144164352057.14%22481.82%08320839.90%5312941.09%10325939.77%2201352078517283
_Since Last GM Reset103600100747405230000039363513001003538-370.350741312050017302704281301541440376128144164352057.14%22481.82%08320839.90%5312941.09%10325939.77%2201352078517283
_Vs Conference93500100676615230000039363412001002830-270.389671201870017302703871301541440339116139145311858.06%22481.82%08320839.90%5312941.09%10325939.77%2201352078517283
_Vs Division234001001218-612200000510-51120010078-171.75012203200173027077130154144088285431100.00%70100.00%08320839.90%5312941.09%10325939.77%2201352078517283

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
107L47413120542837612814416400
All Games
GPWLOTWOTL SOWSOLGFGA
103601007474
Home Games
GPWLOTWOTL SOWSOLGFGA
52300003936
Visitor Games
GPWLOTWOTL SOWSOLGFGA
51301003538
Last 10 Games
WLOTWOTL SOWSOL
360100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
352057.14%22481.82%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
13015414401730270
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
8320839.90%5312941.09%10325939.77%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2201352078517283


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2020-09-3011London Knights7Calgary Hitman8LBoxScore
2 - 2020-10-0119London Knights10Las Vegas Wranglers6WBoxScore
3 - 2020-10-0232Lake Erie Monsters4London Knights11WBoxScore
4 - 2020-10-0355London Knights6Sherbrooke Phoenix7LXBoxScore
5 - 2020-10-0460Brampton Battalion9London Knights6LBoxScore
6 - 2020-10-0584Sherbrooke Phoenix5London Knights11WBoxScore
7 - 2020-10-0694London Knights7Peoria Riverman8LBoxScore
9 - 2020-10-08107London Knights5Lake Erie Monsters9LBoxScore
10 - 2020-10-09120Las Vegas Wranglers8London Knights6LBoxScore
12 - 2020-10-11139Calgary Hitman10London Knights5LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 1,344,284$ 1,344,284$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT